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Abstract

In this report we list the Fortran subroutines for

evaluating the confluent hypergeometric functions M(a,b:x) and

U(a,b;x). These subroutines use the stable recurrence

relations given e.g. in Wimp.
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Introduction

It is well known that the ordinary differential equation

d?v dy
x a2 + (1-x) Ix — &Y = 0

has a solution

v(x) = AM(a,15x) + BU(a,1;x)

if a is not a negative integer.

This problem arises e.g. when solving the linearized

shallow water equations with the full linear variation in depth

included (see Williams, Staniforth and Neta. [1]).

The computation of the confluent hypergeometric functions

is based on the Miller algorithm (see e.g. Wimp. [2]).

In

general. one has a second order difference equation

z(n) + a(n)z(n+1l) + b(n)z(n+2) = 0. n > 0., b(n) # O

If b(n) = 0 for some n, in some cases one can make a change of

the

variable Y(n) = An)z(n) which will produce an equation of

desired tyvpe. Let w(n) be a nontrivial solution and the sum of

the normalizing series

x
S =Y c(k)yw(k) # 0

.:)




is known. Let N be a large integer and define zy(n)., 0 < n

N+1., by

N+1

0 n
zN(n) = {

1 N

=
I

zy(n) + a(n)zy(n+l) + b(n)zy(n+2) = 0, n = N-1, .... 1.
One can approximate w(n) by wy(n)
wy(n) = Szy(n) /Sy
where
N
Sy = 2 ci{k)zy(k).
k=0
The algorithm is =aid to converge if
wy(n) — w(n) as N —

The function M(a.bix) satisfies the recurrence relation

2n+t 2
(2n4+b+2) (n+a)z(n) - (2n+b+l){(2a~b) + (2n+))g?n+b+ )}z(n+l)
- (2n4+b)(n+b+l-a)z(n+2) = 0

The minimal solution is=

,\’n(a\n

win) = m—z—;‘—

M(a+n.2n+bH:x)




where

F(n+c)

(I = Ty

The normalization relationship used in our subroutine is

SR ED b2
S = b-1 —kz—: i (b-1) (b+2k-1)w(k)
An obvious modification must be made if b = 1. The algorithm

is not defined if b, b+l-a, a are negative integers or zero.

The function U(a,b:x) satisfies the relationship

(n+a) (n+a+1-b)z(n) - (n+1) [2(n+a+l)+x~-bjz(n+1)

+ (n+1)(n+2)z(n+2) = O

The minimal solution is

_ x"(a)n(at+l-
= i

wi{n) b)n U(a+n.bix)

for larg x| < #. A normalization relation is

In the next secction we give a listing of the Fortran

subroutines.
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Subroutine Miller

SUBROUTINE MILLER(N.ALPHA,BETA.X,S.SS,COEFF)
INTEGER N
REAL=& ALPHA .BETA.X,SS
REAL+& S(0:1000)
EXTERNAL COEFF
USES THE J.C.P. MILLER ALGORITHM TO COMPUTE
S(O0:N).
BEGIN

INTEGER NN.K

REAL=& T,D.EPS,A,B,C

REAL=& OLDS(0:1000)

EPS = 0.000000001
C INITIALIZE OLDS.

DO 1 K = 0, 1000
OLDS(K) = 0

OESND]

1 CONTINUE
C CHOOSE INITIAL NN.
NN = N 4+ 2
C INITIALIZE K, S AND T.
2 K = NN
S(K+1) = O
S(K) =1
CALL COEFF (K.ALPHA,BETA.X.A.B,C)
T = 2-C=S(K)
C TAKE A BACKWARD RECURRENCE STEP AND UPDATE IT.
3 K=K - 1

CALL COEFF (K.ALPHA ,BETA.X.A.B,C)
S(K) = A=S(K+1) + B=S(K+2)
C CHECK FOR OVERFLOW AND RESCALE IF NECESSARY.
D= DABS(S(K))
IF (D .GT. 1.D30) THEN
C BEGIN
CALL SCALE(K.NN.S.T.D)
END IF
IF (K .GT. 0) THEN
C BEGIN
T = T 4+ 2=C=S(K)
GO TO 3
END IF
T = T + C=S(0)
DO 4 K = 0. N
S(K) = S(K)/T
4 CONTINUE
, TEMPORARY PRINT STATEMENT.
C PRINT=. S(0)
' TEST FOR CONVERGENCE.
D=0
DO 5K = 0. N
5 D =D + S(K)==2
CONTINUE
D = DSQRT(D)
T = 0

HoH




DO 6 K = 0, N
T =T + (S(K) - OLDS(K))==2
6 CONTINUE

T = DSQRT(T)
C TAKE ANOTHER STEP IF NO CONVERGENCE.
IF (T .GT. EPS=D) THEN
C BEGIN
NN = 2«NN

DO 7 K = 0, N
OLDS(K) = S(K)
CONTINUE
IF(NN .LE. 1000) GO TO 2
PRINT 999.NN,ALPHA,BETA.X.T
999 FORMAT (’ == NO CONVERGENCE == NN AP CP X T '.15.4E14.7)
END IF
SS=S(0)
RETURN
END

R]
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SESEa RO

SUBROUTINE COEFF (N,ALPHA ,BETA.X.A.B.C)
INTEGER N
REAL~& ALPHA.BETA.X.A,B.C
COMPUTES COEFFICIENTS USED BY J.C.P. MILLER ALGORITHM FOR
A CONFLUENT HYPERGEOMETRIC FUNCTION M(a,b:x)
SEE JET WIMP. COMPUTATION WITH RECURRENCE RELATIONS.
PITMAN 1984 PP. 61-62
BEGIN
INTEGER M.K
REAL=8.T.U,V. W

S = 2=<ALPHA - BETA
T = N + ALPHA
M = 2=N
U =M + BETA
V=U 4+ 1
W=V 4+ 1
A= (S/W + U/X)=\V/T
B = (N + BETA - ALPHA + 1)=U/T/W
T = 1
IF (N .GT. 0) THEN
BEGIN
S = BETA - 1
DO 1 Kk = 1. N-1
T = -T=(14S/K)
CONTINUE
T = ~-T=(145/M)
END 1V
C =T
RETURN
END

SUBROUTINE SCALE(K.N.S.T.D)
INTEGER N.K

REAL=S T.D

REAL=® S(0:1000)

BEGIN
INTEGER )
T = T/D

DD 1 J = K. N
S(JYy = S /Db
CONTINUE
RETURN
END




SUBROUTINE COEFU(N,ALPHA.BETA,X,A.B,C)
INTEGER N
REAL=2 ALPHA, BETA.X,A.B.C
COMPUTES COEFFICIENTS USED BY J.C.P. MILLER ALGORITHM FOR
A CONFLUENT HYPERGEOMETRIC FUNCTION U(a.b:x)
SEE JET WIMP. COMPUTATION WITH RECURRENCE RELATIONS.
PITMAN 1984 PP. 63-64
BEGIN

INTEGER M.K

REAL=& S . T.U,V.W

ALPHA + QFLOAT(N)

S + 1.D0
S=(T - BETA)
QFLOAT(N + 1)
Vo o+ 1.D0
(2=T + X - BETA)=V/U
- VaW/U
1

s RsNONe

END

Remark: The program that calls Miller must supply as a last
parameter either COEFF (for M) or COEFU (for U).
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The subroutines are available on a diskette from either author
upon request. These subroutines were tested extensively for

various values of a, b and x.

. Remark: If the parameter is a negative integer. the solution

of the differential equation is

fx‘
vio= ALp(x) + B{ln|x|Ln(x) + Y Bmx™}
m=0

where n = -a.

LLn(x) are Laguerre polynomials whose coefficients aq;

sati={yv

P-n-| —
0, = > u|_1. 1 = 2. PP § T
i
a; = -n
The coefficient= Jn satisfy
)
2(m-n
(m-n).3y + (l - —(————) Om>
1 = m+1 m = 1 n-1
N 1 —_— -_ . 0 . e -
m+ (m+l)2
Im = f—i—ﬁ (p m = n
in-+1)
. “—"’%l o1 m = n+l.n+2....

m
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